一区二区三区欧美精品,久久精品99国产精品亚洲最刺激,久久精品—区二区三区,99re国产精品视频,91精品啪在线观看国产线免费,福利电影一区二区三区,99久久国产综合精品色伊,日韩一级片在线免费观看
郵箱:ty@tysyj.com | 咨詢熱線:0514-86291226

新聞中心

NEWS CENTER

hangyexinxi

行業(yè)信息

材料力學

 

   

材料力學 (基礎學科)

材料力學(mechanics of materials)是研究材料在各種外力作用下產(chǎn)生的應變、應力、強度、剛度、穩(wěn)定和導致各種材料破壞的限度。一般是機械工程和土木工程以及相關專業(yè)的大學生修讀的課程,學習材料力學一般要求學生先修高等數(shù)學和理論力學。材料力學與理論力學、結(jié)構(gòu)力學并稱三大力學。材料力學的研究對象主要是棒狀材料,如桿、梁、軸等。對于桁架結(jié)構(gòu)的問題在結(jié)構(gòu)力學中討論,板殼結(jié)構(gòu)的問題在彈性力學中討論。

 

中文名

    材料力學

 

外文名

    mechanics of materials

 

目錄

 

    1 定義

    2 研究內(nèi)容

    3 學科任務

    4 基本假設

    5 大事記

    ? 成為獨立學科

    ? 梁的彎曲問題

    ? 桿件扭轉(zhuǎn)問題

    ? 壓桿穩(wěn)定問題

 

定義

固體力學的一個分支,研究結(jié)構(gòu)構(gòu)件和機械零件承載能力的基礎學科。其基本任務是:將工程結(jié)構(gòu)和機械中的簡單構(gòu)件簡化為一維桿件,計算桿中的應力、變形并研究桿的穩(wěn)定性,以保證結(jié)構(gòu)能承受預定的載荷;選擇適當?shù)牟牧稀⒔孛嫘螤詈统叽纾员阍O計出經(jīng)濟的結(jié)構(gòu)構(gòu)件和機械零件。

在結(jié)構(gòu)承受載荷或機械傳遞運動時,為保證各構(gòu)件或機械零件能正常工作,構(gòu)件和零件符合如下要求:①不發(fā)生斷裂,即具有足夠的強度;②構(gòu)件所產(chǎn)生的彈性變形應不超出工程上允許的范圍,即具有足夠的剛度;③在原有形狀下的平衡應是穩(wěn)定平衡,也就是構(gòu)件不會失去穩(wěn)定性。對強度、剛度和穩(wěn)定性這三方面的要求,有時統(tǒng)稱為“強度要求”,而材料力學在這三方面對構(gòu)件所進行的計算和試驗,統(tǒng)稱為強度計算和強度試驗。

為了確保設計,通常要求多用材料和用高質(zhì)量材料;而為了使設計符合經(jīng)濟原則,又要求少用材料和用廉價材料。材料力學的目的之一就在于為合理地解決這一矛盾,為實現(xiàn)經(jīng)濟的設計提供理論依據(jù)和計算方法。

研究內(nèi)容

在人們運用材料進行建筑、工業(yè)生產(chǎn)的過程中,需要對材料的實際承受能力和內(nèi)部變化進行研究,這就催生了材料力學。運用材料力學知識可以分析材料的強度、剛度和穩(wěn)定性。材料力學還用于機械設計使材料在相同的強度下可以減少材料用量,優(yōu)化結(jié)構(gòu)設計,以達到降低成本、減輕重量等目的。

在材料力學中,將研究對象被看作均勻、連續(xù)且具有各向同性的線性彈性物體。但在實際研究中不可能會有符合這些條件的材料,所以須要各種理論與實際方法對材料進行實驗比較。

材料力學的研究內(nèi)容包括兩大部分:一部分是材料的力學性能(或稱機械性能)的研究,材料的力學性能參量不僅可用于材料力學的計算,而且也是固體力學其他分支的計算中必不可缺少的依據(jù);另一部分是對桿件進行力學分析。桿件按受力和變形可分為拉桿、壓桿(見柱和拱)、受彎曲(有時還應考慮剪切)的梁和受扭轉(zhuǎn)的軸等幾大類。桿中的內(nèi)力有軸力、剪力、彎矩和扭矩。桿的變形可分為伸長、縮短、撓曲和扭轉(zhuǎn)。在處理具體的桿件問題時,根據(jù)材料性質(zhì)和變形情況的不同,可將問題分為三類:

①線彈性問題。在桿變形很小,而且材料服從胡克定律的前提下,對桿列出的所有方程都是線性方程,相應的問題就稱為線性問題。對這類問題可使用疊加原理,即為求桿件在多種外力共同作用下的變形(或內(nèi)力),可先分別求出各外力單獨作用下桿件的變形(或內(nèi)力),然后將這些變形(或內(nèi)力)疊加,從而得到結(jié)果。

②幾何非線性問題。若桿件變形較大,就不能在原有幾何形狀的基礎上分析力的平衡,而應在變形后的幾何形狀的基礎上進行分析。這樣,力和變形之間就會出現(xiàn)非線性關系,這類問題稱為幾何非線性問題。

③物理非線性問題。在這類問題中,材料內(nèi)的變形和內(nèi)力之間(如應變和應力之間)不滿足線性關系,即材料不服從胡克定律。在幾何非線性問題和物理非線性問題中,疊加原理失效。解決這類問題可利用克羅蒂-恩蓋塞定理或采用單位載荷法等。

在許多工程結(jié)構(gòu)中,桿件往往在復雜載荷的作用或復雜環(huán)境的影響下發(fā)生破壞。例如,桿件在交變載荷作用下發(fā)生疲勞破壞,在高溫恒載條件下因蠕變而破壞,或受高速動載荷的沖擊而破壞等。這些破壞是使機械和工程結(jié)構(gòu)喪失工作能力的主要原因。所以,材料力學還研究材料的疲勞性能、蠕變性能和沖擊性能。

學科任務

1. 研究材料在外力作用下破壞的規(guī)律 ;

2. 為受力構(gòu)件提供強度,剛度和穩(wěn)定性計算的理論基礎條件;

3. 解決結(jié)構(gòu)設計安全可靠與經(jīng)濟合理的矛盾。

基本假設

1、連續(xù)性假設——組成固體的物質(zhì)內(nèi)毫無空隙地充滿了固體的體積:

2、均勻性假設——在固體內(nèi)任何部分力學性能完全一樣:

3、各向同性假設——材料沿各個不同方向力學性能均相同:

在材料力學中,將研究對象被看作均勻、連續(xù)且具有各向同性的線性彈性物體,但在實際研究中不可能會有符合這些條件的材料,所以須要各種理論與實際方法對材料進行實驗比較。材料在機構(gòu)中會受到拉伸或壓縮、彎曲、剪切、扭轉(zhuǎn)及其組合等變形。根據(jù)胡克定律(Hooke's law),在彈性限度內(nèi),材料的應力與應變成線性關系。

大事記

成為獨立學科

通常認為,意大利科學家伽利略(Galileo)《關于力學和局部運動的兩門新科學的對話和數(shù)學證明》—書的發(fā)表(1638年)是材料力學開始形成一門獨立學科的標志。在該書中這位科學巨匠嘗試用科學的解析方法確定構(gòu)件的尺寸,討論的第—問題是直桿軸向拉伸問題,得到承載能力與橫截面積成正比而與長度無關的正確結(jié)論。

梁的彎曲問題

在《關于力學和局部運動的兩門新科學的對話和數(shù)學證明》一書中,伽利略討論的問題是梁的彎曲強度問題。按今天的科學結(jié)論,當時作者所得的彎曲正應力公式并不完全正確,但該公式已反映了矩形截面梁的承載能力和bh(b、h分別為截面的寬度和高度)成正比,圓截面梁承載能力和d(d為橫截面直徑)成正比的正確結(jié)論。對于空心梁承載能力的敘述則更為精彩,他說,空心梁“能大大提高強度而無需增加重量,所以在技術上得到廣泛的應用。在自然界就更為普遍了。這樣的例子在鳥類的骨骼和各種蘆葦中可以看到,它們既輕巧,而又對彎曲和斷裂具有相當高的抵抗能力”。

梁在彎曲變形時,沿長度方向的纖維中有一層既不伸長也不縮短者,稱為中性層。早在1620年荷蘭物理學家和力學家比克門(Beeckman I)發(fā)現(xiàn),梁彎曲時一側(cè)纖維伸長、另一側(cè)纖維縮短,必然存在既不伸長也不縮短的中性層。英國科學家胡克(Hooke R)于1678年也闡述了同樣的現(xiàn)象,但他們都沒有述及中性層位置問題。首先論及中性層位置的是法國科學家馬略特(Mariotte E, 1680年)。其后萊布尼茲(Leibniz G W)、雅科布·伯努利(Jakob Bernoulli,1694)、伐里農(nóng)(Varignon D, 1702年)等人及其他學者的研究工作盡管都涉及了這一問題,但都沒有得出正確的結(jié)論。18世紀初,法國學者帕倫(Parent A)對這一問題的研究取得了突破性的進展。直到1826年納維(Navier,C. -L. -M. -H)才在他的材料力學講義中給出正確的結(jié)論:中性層過橫截面的形心。

平截面假設是材料力學計算理論的重要基礎之一。雅科布·伯努利于1695年提出了梁彎曲的平截面假設,由此可以證明梁(中性層)的曲率和彎矩成正比。此外他還得到了梁的撓曲線微分方程。但由于沒有采用曲率的簡化式,且當時尚無彈性模量的定量結(jié)果,致使該理論并沒有得到廣泛的應用。

梁的變形計算問題,早在13世紀納莫爾(Nemore J de)已經(jīng)提出,此后雅科布·伯努利、丹尼爾·伯努利(Daniel Bernoulli)、歐拉(Euler L)等人都曾經(jīng)研究過這一問題。1826年納維在他材料力學講義中得出了正確的撓曲線微分方程式及梁的彎曲強度的正確公式,為梁的變形與強度計算問題奠定了正確的理論基礎。

俄羅斯鐵路工程師儒拉夫斯基(ЖуравскийДИ)于1855年得到橫力彎曲時的切應力公式。30年后,他的同胞別斯帕羅夫(ВеспаловД)開始使用彎矩圖。

對于圓軸扭轉(zhuǎn)問題,可以認為法國科學家?guī)靵觯–oulomb C A de)分別于1777年和1784年發(fā)表的兩篇論文是具有開創(chuàng)意義的工作。其后英國科學家楊(Young T)在1807年得到了橫截面上切應力與到軸心距離成正比的正確結(jié)論。此后,法國力學家圣維南(Saint-Venant B de)于19世紀中葉運用彈性力學方法奠定了柱體扭轉(zhuǎn)理論研究的基礎,因而學術界習慣將柱體扭轉(zhuǎn)問題稱為圣維南問題。閉口薄壁桿件的切應力公式是布萊特(Bredt R)于1896年得到的;而鐵摩辛柯(Timoshenko S P,1922)、符拉索夫(ВласовВЗ,1939)和烏曼斯基(Уманский А А,1940)則對求解開口薄壁桿件扭轉(zhuǎn)問題做出了杰出的貢獻。

壓桿穩(wěn)定問題

壓桿在工程實際中到處可見,11章已經(jīng)述及壓桿的失穩(wěn)現(xiàn)象。早在文藝復興時期,偉大的藝術家、科學家和工程師達·芬奇對壓桿做了一些開拓性的研究工作。荷蘭物理學教授穆申布羅克(Musschenbroek P van)于1729年通過對于木桿的受壓實驗,得出“壓曲載荷與桿長的平方成反比的重要結(jié)論”。眾所周知,細長桿壓曲載荷公式是數(shù)學家歐拉首先導出的。他在1744年出版的變分法專著中,曾得到細長壓桿失穩(wěn)后彈性曲線的描述及壓曲載荷的計算公式。1757年他又出版了《關于柱的承載能力》的論著(工程中習慣將壓桿稱為柱),糾正了在1744年專著中關于矩形截面抗彎剛度計算中的錯誤。而大家熟知的兩端鉸支壓桿壓曲載荷公式是拉格朗日(Lagrange J L)在歐拉近似微分方程的基礎上于1770年左右得到的。1807年英國自然哲學教授楊(Young T)、1826年納維先后指出歐拉公式只適用于細長壓桿。1846年拉馬爾(Lamarle E)具體討論了歐拉公式的適用范圍,并提出超出此范圍的壓桿要依*實驗研究方可解決問題的正確見解。關于大家熟知的非細長桿壓曲載荷經(jīng)驗公式的提出者,則眾說紛云,難于考證。一種說法是瑞士的臺特邁爾(Tetmajer L)和俄羅斯的雅辛斯基(Ясинский Φ С)都曾提出過有關壓桿臨界力與柔度關系的經(jīng)驗公式,雅辛斯基還用過許可應力折減系數(shù)計算穩(wěn)定許可應力。


 
主站蜘蛛池模板: 丰县| 抚顺市| 磐安县| 永州市| 余庆县| 民丰县| 辽宁省| 天祝| 垦利县| 双桥区| 夏河县| 霍林郭勒市| 工布江达县| 寻甸| 宜兰县| 益阳市| 南宫市| 扎鲁特旗| 扎兰屯市| 宁明县| 休宁县| 承德县| 额尔古纳市| 广汉市| 满洲里市| 巧家县| 湘西| 定边县| 长垣县| 双牌县| 霍山县| 大同县| 永安市| 安乡县| 浠水县| 鹿泉市| 利川市| 保德县| 沙坪坝区| 千阳县| 吴江市| 黑河市| 舞阳县| 曲水县| 临潭县| 大姚县| 平邑县| 长泰县| 焦作市| 威远县| 金寨县| 颍上县| 正安县| 诸暨市| 农安县| 龙里县| 大安市| 武平县| 京山县| 岗巴县| 苍梧县| 赞皇县| 鲁山县| 澄江县| 徐州市| 大名县| 台东县| 绿春县| 当阳市| 礼泉县| 明水县| 忻城县| 皋兰县| 乌拉特后旗| 上蔡县| 申扎县| 柳江县| 曲阜市| 全南县| 嘉兴市| 博客| 泌阳县|